

Getting CMS ready for first physics was a challenge

- High Level Trigger (HLT)
 compute farm is final stage of
 CMS data acquisition, was
 completed just in time
- LLNL took lead on aspects of HLT completion:
 - Analysis of HLT performance: Uncovered critical timing issues resolved with detector experts
 - Developed configuration database: Required to track trigger changes while running (beam, detector, physics goals), essential for physics analysis
- Relocated 2 postdocs to CERN (Jonathan Hollar and Bryan Dahmes)

LLNL helped make CMS trigger a success (funded by LLNL)

Keeping up with the data processing is difficult

 David Lange appointed CMS Level 2 manager of software development tools + reconstruction group (capabilities developed for BABAR)

Millions of lines of code, 200+ active developers

Solved particularly dramatic memory usage problem.

 LLNL received OHEP Supplemental funds for multi-core computing R&D to keep up with LHC luminosity

LLNL leadership of CMS reconstruction software a success (funded first by LLNL and later CMS project)

Backgrounds easily obscure new physics signals

• LLNL pursuing innovative discovery channels via virtual $\gamma\gamma$ production (fundamentally new way to reject background)

- Protons remain intact
- No underlying event! Clear signature in CMS.
- Theoretically clean QED process.
- Cross sections are fb-pb.

Leverages LLNL expertise from $\gamma\gamma$ collider physics

Proposed forward detectors enhance CMS physics reach

Forward detectors

Forward detectors

- Extra information by detecting scattered forward protons:
 - Interaction vertex point
 - Mass of the produced particle
 - Boost of the produced particles
- Enables SUSY, Higgs, QCD physics otherwise unattainable with CMS

Central Exclusive Production (QED)

Central Exclusive Production (QCD)

CMS upgrade: small detectors have a big impact on physics

Slepton discovery possible with forward detectors

- Current CMS can not detect sleptons directly
- LLNL di-smuon analysis
 - Signal: isolated dimuon with two proton tags
 - Backgrounds separated via kinematics

$$p\mu\mu$$
p, $p\tau\tau$ p $pWWp o p\mu\nu\mu\nu$ p

- Slepton mass measured via edge in proton c.o.m.
- CompHEP+HECTOR tracking through magnet optics

Central Exclusive Production (CEP)

meters

Slepton discovery possible with forward detectors

Proton tag efficiency

- Positive arm only 79%
- Negative arm only 73%
- Both 59%

Can capture the signal, next step is to complete background studies

proton displacement from beam

pWWp is both background and discovery channel

- Cleanly separated from slepton pairs using kinematics
- Can measure standard model rate with 5 fb⁻¹

- Anomalous quartic-boson coupling sensitive to Higgsless, very heavy Higgs, other beyond SM physics
- Standard WW measurement sensitive to triple-boson coupling which may not reveal the new physics
- Can improve quartic coupling measurement by factor ~10,000 over LEP, all the way down to Higgsless models

If LHC sees nothing, this can reveal new physics. If LHC sees something, this can help explain it.

$$\begin{split} \mathcal{L}_{6}^{0} &= \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha} \\ \mathcal{L}_{6}^{C} &= \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta} \end{split}$$

Dimuon analysis provides absolute luminosity measurement

- Many CMS analysis are limited by lumi. uncertainty, e.g. W/Z cross section and SUSY search (due to W/Z+jet background)
- Precision Lumi. Tracker system not ready until 2013 and only measures relative luminosity
- Dimuon analysis can provide few % lumi measurement
 - 7000 events/fb⁻¹
 - Must subtract contribution from single diffraction (if not proton tag)
 - Pileup will reduce the efficiency and ultimately limit the precision

Pileup becomes the problem, fast timing is a solution

di-smuon signal with pileup

Drell-Yan di-muon background with fake double proton tag

- Eventually multiple-events per crossing makes "empty detector" cuts ineffective.
 - Vertexing within the event helps
 - Proton tag provides z position
- Triple coincidence involving two single-diffractions becomes a problem
 - 20ps resolution gives factor 24 rejection
- At max luminosity multiple proton tags per crossing becomes a problem
 - Reject with more precise and accurate (absolute) timing reference

Precision timing of protons is critical to forward detector upgrade

High Precision Spectrometer (HPS) is on track for CMS upgrade in 2013 shutdown

Original plan: Detectors installed at 240m (420m) in 2012 (2016) shutdown

CMS approved R&D project, construction follows demonstrations

LLNL leads development of timing system for forward detectors (HPS)

- Leverage system developed as trigger for LCLS detectors
 - RF cable with feedback to keep clocks at each end in sync
- Addressing CMS request for system demonstration:
 - LHC safety qualification
 - Signal stability for max length of 500 m
 - Design and prototype for LHC frequency
 - Time resolution with proton detector signals
 - Time resolution with CMS highrate TDCs

LLNL terahertz oscilloscope solves multiple proton detection problem for HPS

- Optical time-stretcher permits 1 ps time resolution
 - Chirped laser pump pulse on non-linear mixing crystal acts like a lens
 - Demonstrated factor of 100 time stretch and 0.75 ps resolution
- CMS R&D plan: couple with proton detectors and design pump laser for LHC pulse structure

LLNL provides Geant4 capabilities for HEP

- Open-source physics modules: built-in/add-on Geant4
 - http://nuclear.llnl.gov
 - Official Geant4 collaborators

CRY: Cosmic-ray showers

RadSrc: Gamma-ray emission

Fission multiplicity

DHS funded

Next big thing: G4LEND
 (Low-energy Nuclear Physics from Data)

ARRA funded

NNSA +

- Data-driven nuclear physics directly from nuclear evaluations
- Collab. with SLAC, LLNL providing new format, interface, and all data
- Enables background studies in LHC: low-energy neutrons, accel. background

Delivered by HEP physicists at LLNL, funded outside of OHEP

OHEP/LLNL partnership enhances the physics output of CMS

Ongoing contributions

- Discovery physics channels: sleptons and quartic boson coupling
- Luminosity measurement from exclusive dimuons
- Multi-core computing R&D and CMS reconstruction coordinator
- Forward proton detector reference timing system for physics upgrade
- Terahertz oscilloscope technology
- Geant4 simulation capabilities

Joined CMS in 2005

- 2 post-docs
- 3 senior scientists
- Software-development tools coordinator
- High-level trigger commissioning

